Distinguishability of Infinite Groups and Graphs
نویسندگان
چکیده
The distinguishing number of a group G acting faithfully on a set V is the least number of colors needed to color the elements of V so that no non-identity element of the group preserves the coloring. The distinguishing number of a graph is the distinguishing number of its automorphism group acting on its vertex set. A connected graph Γ is said to have connectivity 1 if there exists a vertex α ∈ V Γ such that Γ \ {α} is not connected. For α ∈ V , an orbit of the point stabilizer Gα is called a suborbit of G. We prove that every nonnull, primitive graph with infinite diameter and countably many vertices has distinguishing number 2. Consequently, any nonnull, infinite, primitive, locally finite graph is 2-distinguishable; so, too, is any infinite primitive permutation group with finite suborbits. We also show that all denumerable vertextransitive graphs of connectivity 1 and all Cartesian products of connected denumerable graphs of infinite diameter have distinguishing number 2. All of our results follow directly from a versatile lemma which we call The Distinct Spheres Lemma.
منابع مشابه
On trivial ends of Cayley graph of groups
In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...
متن کاملDistinguishability of complete and unextendible product bases
It is not always possible to distinguish multipartite orthogonal states if only local operation and classical communication (LOCC) are allowed. We prove that we cannot distinguish the states of an unextendible product bases (UPB) by LOCC even when infinite resources (infinite-dimensional ancillas, infinite number of operations). Moreover we give a method to check the LOCC distinguishability of ...
متن کاملEccentric Connectivity Index of Some Dendrimer Graphs
The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.
متن کاملTriple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملLocal distinguishability of quantum states in infinite dimensional systems
We investigate local distinguishability of quantum states by use of the convex analysis about joint numerical range of operators on a Hilbert space. We show that any two orthogonal pure states are distinguishable by local operations and classical communications, even for infinite dimensional systems. An estimate of the local discrimination probability is also given for some family of more than ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 19 شماره
صفحات -
تاریخ انتشار 2012